Binary Search Trees

Kuan-Yu Chen (i & %)

2020/10/19 @ TR-313, NTUST

Review

« A linked list, in simple terms, is a linear collection of data
elements

— Data elements are called nodes

— Each node contains one or more data fields and a pointer to
the next node

START

Y
[N)
Y
w
Y
IS
Y
Ul
Y
o
Y
~
>

> 1

- Traversing a binary tree is the process of visiting each node
in the tree exactly once in a systematic way

— Pre-order Traversal
— Post-order Traversal
— In-order Traversal

— Level-order Traversal

Binary Search Trees.

A binary search tree, also known as an ordered binary tree,
is a variant of binary trees in which the nodes are arranged in
an order

— All the nodes in the left sub-tree have a value less than that of
the root node

— All the nodes in the have a value either
than the root node

Binary Search Trees..

o Since the nodes in a binary search tree are ordered, the time
needed to search an element in the tree is greatly reduced
— We do not need to traverse the entire tree

— At every node, we get a hint regarding which sub-tree to search
in

« The average running time of a search operation is O(log,n)

« In the worst case, a binary search tree will take O(n) time to
search for an element

right skewed
4
OO
27 (59

(15 ®)
®)

Binary Search Trees or not?.

« Which trees are binary search trees?

(29 (29 21
2) @ @) @& (19 28)
@) (9 @) @ @ @ 5 (8

Binary Search Trees or not?..

« Which trees are binary search trees?

(29
(22)| (28) (No)
@) (9

(21 (21
@ (Yes) @ (No)
@ ® @O |[@[@)

Steps for Creating a Binary Search Tree

« Create a binary search tree using the following data elements:
45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81

®
» ® @608
@ @ @
®» & ® @ 39

(Step 2) (Step 3) (Step 4)

(Step 5)

#9)

Searching a Node.

« The search function is used to find whether a given value is
present in the tree or not

— Checks if the binary search tree is empty

— Compare the value

« Find
« Go left
« Go right

searchElement (TREE, VAL)

Step 1: IF TREE—>DATA = VAL OR TREE = NULL
Return TREE
ELSE
IF VAL < TREE —> DATA
Return searchElement(TREE —> LEFT, VAL)
ELSE
Return searchElement(TREE —> RIGHT, VAL)
[END OF IF]

[END OF IF]
Step 2: END

Searching a Node..

« Searching a node with value 12 in the given binary search
tree

(Step 1) (Step 2) (Step 3)
- @ (45 45,
() (8 @ 69 (39 (8

@ & 606 -0 6 @
(9 &) @@ 0 &) @ O ¢ 6@ @
) & (32

Searching a Node...

 Searching a node with value 67

(Step 1) (Step 2)

nd O D

® 8 o @&
(12 69 (3 (19 69 (3
19 6) @ 6 W ¢ 6@ ¢
& &

(19 69 (B e

(Step 3)

(49)
© @

(12

(Step

(49

4)

© @

&9

© ¢ & ® O 64

)

&

@
t

(79)

)

Searching a Node....

 Searching a node with the value 40

11

Inserting a Node.

 The insert function is used to add a new node with a given
value at the correct position in the binary search tree

Insert (TREE, VAL)

Step 1: IF TREE = NULL
Allocate memory for TREE

SET TREE —>DATA = VAL
SET TREE —> LEFT = TREE —> RIGHT = NULL
ELSE
IF VAL < TREE —> DATA
Insert(TREE —> LEFT, VAL)
ELSE
Insert(TREE —> RIGHT, VAL)
[END OF IF]
[END OF IF]
Step 2: END

12

Inserting a Node..

o Inserting a node with values 12

(Step 1) (Step 2) (Step 3)

-~ 45, (45
® & =6 ©© OND
CRCOENORCICEONC

13

Inserting a Node...

o Inserting a node with values 55

(Step 1) (Step 2) (Step 3) (Step 4)
@ (45 (45 (45
® & 9 O & & 9 ©©
) B & ® -6 B & ©
-

14

Deleting a Node.

« The delete function deletes a node from the binary search tree

— In order to take care the properties of binary search tree, we can
divide the deleting functions into three categories

 Deleting a node that has no children

 Deleting a node with one child

 Deleing a node with two children

Delete (TREE, VAL)

Step 1: IF TREE = NULL

Write "VAL not found in the tree"
ELSE IF VAL < TREE — DATA
Delete(TREE->LEFT, VAL)
ELSE IF VAL > TREE — DATA
Delete(TREE —> RIGHT, VAL)
ELSE IF TREE —> LEFT AND TREE — RIGHT
SET TEMP = findLargestNode(TREE —> LEFT)
SET TREE — DATA = TEMP —> DATA
Delete(TREE —> LEFT, TEMP —> DATA)
ELSE
SET TEMP = TREE
IF TREE — LEFT = NULL AND TREE —> RIGHT = NULL
SET TREE = NULL
ELSE IF TREE — LEFT != NULL
SET TREE = TREE —> LEFT
ELSE
SET TREE = TREE —> RIGHT
[END OF IF]
FREE TEMP
[END OF IF]

Step 2: END

15

Deleting a Node..

« Deleting a node that has no children
— Simply remove this node without any issue

— The simplest case of deletion

« Deleting node 78 from the given binary search tree
(Step 1) (Step 2) (Step 3) (Step 4)

*: (45 : (45)

@® 6 @ G~ @ 6 @© 6

ONQ &9 "
O © O) |6

Deleting a Node...

« Deleting a node with one child
— Replace the node with its child

— It is also simple!

« Deleting node 54 from the given binary search tree

(Step 1) (Step 2) (Step 3) (Step 4)

- (35 (45 (45 (45
PR
) ® &) ©® =6 ©® ® @

17

Deleting a Node....

« Deleing a node with two children

— Replace the node’s value with its in-order predecessor (largest
value in the left sub-tree) or in-order successor (smallest value

in the right sub-tree)

« Deleting node 56 from the given binary search tree
(Step 1) (Step 2) (Step 3) (Step 4)

@ (45 (4) (45

® 6 @ @ @ ® & ®
& ©® &) @ @@ &) @
B @ & 6 & 6@ &)

Replace node 56 with 55 Delete leaf node 55

18

Deleting a Node.....

« Deleing a node with two children

— Replace the node’s value with its in-order predecessor (largest
value in the left sub-tree) or in-order successor (smallest value

in the right sub-tree)

« Deleting node 56 from the given binary search tree

(Step 1) (Step 2) (Step 3) (Step 4)

@ @@

Replace node Replace node Delete leaf

56 with 78

78 with 80

(Step 5)

node 80

19

Deleting a Node......

Delete (TREE, VAL)

Step 1: IF TREE = NULL

Write "VAL not found in the tree”

ELSE IF VAL < TREE —> DATA
Delete(TREE->LEFT, VAL)

ELSE IF VAL > TREE —> DATA
Delete(TREE —> RIGHT, VAL)

ELSE IF TREE —> LEFT AND TREE —> RIGHT
SET TEMP = findLargestNode(TREE —> LEFT)
SET TREE —> DATA = TEMP —> DATA
Delete(TREE —> LEFT, TEMP —>DATA)

ELSE
SET TEMP = TREE

Deleting a node that [IF TREE — LEFT = NULL AND TREE —> RIGHT = NULL

R -
has no children ! SET TREE = NULL
- ELSE IF TREE —> LEFT != NULL
Deleting a node SET TREE = TREE —> LEFT

with one child ELSE
L SET TREE = TREE —> RIGHT

[END OF IF]
FREE TEMP
[END OF IF]
Step 2: END

20

Height of a Node

« Height for a node in a binary search tree
— The height of the leaf node is 1

— In order to determine the height of a node in a binary search

tree, we calculate the height of its left sub-tree h; and the right
sub-tree hp

— After that, the height of the node is 1 + max(h;, hy)
Height (TREE)

Step 1: IF TREE = NULL
Return O
ELSE

SET LeftHeight = Height(TREE —> LEFT)

SET RightHeight = Height(TREE —> RIGHT)
IF LeftHeight > RightHeight
-1 Return LeftHeight + 1
ELSE
Return RightHeight + 1
[END OF IF]
[END OF IF]
Step 2: END

Number of Nodes in a Binary Search Tree

« Determining the number of nodes in a binary search tree is
similar to determining its height

— Number of nodes in a binary search tree is the sum of number
of nodes in left sub-tree, right sub-tree and 1

totalNodes (TREE)

Step 1: IF TREE = NULL
Return O
ELSE

Return totalNodes(TREE —> LEFT)
+ totalNodes(TREE —> RIGHT) + 1

[END OF IF]
0+0+1 2+2+1 ctep 2 L

22

Number of External Nodes

 The total number of external nodes or leaf nodes can be
calculated by adding the number of external nodes in the left
sub-tree and the right sub-tree

— If the tree is empty, then the number of external nodes will be
Zero

— If there is only one node in the tree, then the number of
external nodes will be one

— Number of internal nodes can thus be

obtained!
totalExternalNodes(TREE)

Step 1: IF TREE = NULL
Return O
ELSE IF TREE — LEFT = NULL AND TREE — RIGHT = NULL
Return 1
ELSE
Return totalExternalNodes(TREE —> LEFT) +
totalExternalNodes(TREE —> RIGHT)
[END OF IF]
Step 2: END

Mirror of a Binary Search Tree

- Mirror image of a binary search tree is obtained by
interchanging the left sub-tree with the right sub-tree at

every node of the tree

MirrorImage(TREE)

Step 1: IF TREE != NULL
MirrorImage(TREE —> LEFT)
MirrorImage(TREE —> RIGHT)

SET TEMP = TREE —> LEFT
SET TREE—> LEFT = TREE —> RIGHT
SET TREE —> RIGHT = TEMP

[END OF IF]
Step 2: END

24

Finding the Smallest/Largest Node

« The very basic property of the binary search tree states that
the smaller value will occur in the left sub-tree

— If the left sub-tree is NULL, then the value of the root node will
be smallest @

Smallest node
(left-most
child of the @ @
left sub-tree)
Largest node
@ @ (right-most
child of the

right sub-tree)

 To find the node with the largest value, we find the value of
the rightmost node of the right subtree

— If the right sub-tree is empty, then the root node will be the
largest value in the tree

25

Questions?

kychen@mail.ntust.edu.tw

26

